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A B S T R A C T   

Individuals with substance use problems show lower executive control and alterations in prefrontal brain systems 
supporting emotion regulation and impulse control. A separate literature suggests that heightened inflammation 
also increases risk for substance use, in part, through targeting brain systems involved in executive control. 
Research on neural and inflammatory signaling in substance use, however, has occurred in parallel. Drawing on 
recent neuroimmune network models, we used fMRI to examine the relationships between executive control- 
related brain activity (as elicited by an n-back working memory task), peripheral inflammation, as quantified 
by inflammatory cytokines and C-reactive protein (CRP), and substance use for the past month in 93 participants 
[mean age = 24.4 (SD = 0.6)]. We operationalized low executive control as a neural inefficiency during the n- 
back task to achieve normative performance, as reflected in higher working memory-related brain activity and 
lower activity in the default mode network (DMN). Consistent with prediction, individuals with low executive 
control and high inflammation reported more substance use over the past month, controlling for behavioral 
performance on the n-back, sex, time between assessments, body-mass-index (BMI), and personal socioeconomic 
status (SES) (interaction between inflammation and working memory-related brain activity, b = 0.210, p =
0.005; interaction between inflammation and DMN, b = -0.219, p < 0.001). Findings suggest that low executive 
control and high inflammation may be associated with higher substance use. This has implications for under
standing psychological, neural, and immunological risk for substance use problems and the development of 
interventions to target each of these components.   

1. Introduction 

Among young adults age 20–29, the most commonly used and 
abused substances are tobacco, alcohol, and marijuana and young adults 
display elevated rates of these substances relative to other age groups 
(Delker et al., 2016; Richardson et al., 2014; Wadsworth et al., 2022). 
Substance use and abuse are major risk factors for disability and pre
mature loss of life (Andrews & Westling, 2016). Recent national data 
suggests for young adults exposed to low socioeconomic status (SES) 
environments, the risk for problems related to common forms of sub
stance use are exacerbated (Baptiste-Roberts & Hossain, 2018) and they 
experience a disproportionate burden of negative social, legal, and 
health consequences (Collins, 2016; Garrett et al., 2019). 

Emerging neuroimmune network (NIN) models suggest that stress and 
adversity generated by low SES environments heightens cross-talk be
tween the brain and immune system in a manner that affects individuals’ 
propensity to use common substances of abuse (Nusslock & Miller, 
2016). To date, however, there is minimal empirical research linking 
neuroimmune signaling to substance use, particularly in rural Black 
communities that have been subject to decades of economic neglect, 
residential segregation, and racial discrimination, all of which can 
stimulate inflammation and undermine neurocognitive development 
(Blair & Raver, 2016; Milaniak & Jaffee, 2019). Therefore, in this study, 
we examine the association between neural indicators of executive 
control, peripheral inflammatory activity, and tobacco, alcohol, and 
cannabis use in rural Black young adults. 
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Growing evidence highlights the role of executive control in the use 
and misuse of addictive substances (Hester et al., 2010; Mollick & Kober, 
2020). Executive control is an umbrella term used to describe several 
cognitive processes including the ability to inhibit automatic responses, 
update the contents of working memory, and flexibly shift and regulate 
behavior (Miller, 2000; Miyake & Friedman, 2012). People with low 
executive control can find it difficult to regulate their emotions (John
stone et al., 2007; Young et al., 2016) and they may consume substances 
to manage their dysphoria (Koob & Volkow, 2016; Volkow et al., 2016). 
They also can find it hard to inhibit the urge to use addictive or un
healthy substances when in their presence (Hester et al., 2010). 
Consistent with this view, individuals with, and at risk for, substance use 
problems show deficits on laboratory tasks designed to probe executive 
control (Bickel et al., 2014; Nigg et al., 2006; Thush et al., 2008), and in 
prefrontal brain systems which support emotion regulation, behavioral 
inhibition, and impulse control (Goldstein & Volkow, 2011; Lowe et al., 
2019). 

A separate literature suggests that inflammation also increases one’s 
risk for substance use (Hutchinson & Watkins, 2014). Inflammation is 
one of the first responses of the immune system to infection and injuries, 
and is coordinated by signaling molecules, known as cytokines, that 
facilitate tissue repair and the clearance of pathogens (Netea et al., 
2017). To date, research on neural and inflammatory models of sub
stance use mostly has occurred in parallel. Recently, however, we and 
others (Eisenberger et al., 2017; Hutchinson & Watkins, 2014; Nusslock 
& Miller, 2016; Treadway et al., 2019) have proposed neuroimmune 
network models that highlight bidirectional signaling between the brain 
and immune system in both mental and physical health conditions. 
These models are predicated on the fact that although inflammatory 
cytokines are predominately released by immune cells (e.g., monocytes, 
macrophages) in the periphery, they can access the brain via active 
transport, leaky regions of the blood–brain-barrier, or engaging afferent 
vagal fibers (Haroon et al., 2012; Irwin & Cole, 2011). Inflammation 
does not randomly access the brain, but instead targets neural signaling 
in regions that subserve emotion processing and regulation, as well as 
executive control (Eisenberger et al., 2010; Harrison et al., 2009; Inagaki 
et al., 2012; Weber et al., 2017). This is adaptive when regulated and it 
coordinates a set of defensive and sickness behaviors (e.g., inactivity) 
that facilitate pathogen removal and wound healing. When dysregu
lated, however, chronic inflammation can modulate the structure, 
function, and development of brain regions involved in emotion pro
cessing and regulation, including the prefrontal cortex (PFC) (Capuron 
et al., 2012; Harrison et al., 2009; Meyer, 2013). For example, higher 
inflammatory biomarkers in the periphery are associated with smaller 
medial PFC volume, lower cortical white matter integrity, and lower 
connectivity in resting state networks involved in emotion regulation 
and executive control (Gianaros et al., 2013; Marsland et al., 2008; 
Nusslock et al., 2019; Satizabal et al., 2012). 

The present study tests the hypothesis that low executive control and 
high inflammation synergistically compound each other to increase risk 
for heightened substance use. Recognizing that executive control is a 
broad construct, we focus specifically on working memory, which refers 
to one’s ability to mentally hold and manipulate a limited amount of 
information for a brief period (Baddeley, 1998; Miller et al., 2018). 
Tasks that estimate working memory often require individuals to both 
repeat back and change a series of stimuli in some way. Working 
memory facilitates both simple and complex cognitive functions, such as 
setting goals, making decisions, regulating emotions, and updating or 
adjusting behavior according to perceived consequences (Diamond, 
2013; Finn, 2002; Miller et al., 2018). Deficits in working memory have 
been associated with impulsivity, poor decision-making, mood and 
attention disorders, and increased substance use and misuse (Bechara & 
Martin, 2004; Gärtner et al., 2018; Hinson et al., 2003; Thush et al., 
2008). 

Successful working memory involves the activation of task-relevant 
executive control brain regions, and the deactivation or suppression of 

the default mode network (DMN) (Bressler & Menon, 2010). Task- 
relevant regions include the bilateral dorsolateral prefrontal cortex 
(DLPFC) and the superior frontal gyrus, which mediate executive func
tions such as working memory and inhibitory control, and the posterior 
parietal cortex, involved in attention and multimodal sensory percep
tion (Boisgueheneuc et al., 2006; Bressler & Menon, 2010; Dosenbach 
et al., 2006; Gordon et al., 2018; Philip et al., 2013; Sweet et al., 2008). 
Increased task difficulty and greater effort are associated with increased 
activity in these regions, reflecting heightened vigilance and executive 
control (Dosenbach et al., 2006; Gordon et al., 2018; Sweet et al., 2006). 
The DMN, by contrast, includes the bilateral medial and dorsal medial 
prefrontal cortex, the posterior cingulate cortex and precuneus, the 
angular gyrus, and inferior parietal cortices. The DMN often is involved 
in task-irrelevant mental processes, including mental simulations of the 
past and future, self-monitoring and mind wandering (Raichle, 2015). 
These regions are frequently suppressed in order to optimally perform a 
cognitively demanding task, and greater deactivation of DMN regions is 
typically associated with increased task difficulty and increased effort 
(Buckner et al., 2008; Duda et al., 2019; Owens et al., 2018; Philip et al., 
2013; Raichle, 2015; Sweet et al., 2008; Sweet, Jerskey, et al., 2010; 
Syan et al., 2019). 

Researchers have taken different approaches to studying variations 
in working memory-related brain activity. The first aims to identify the 
profile of brain activity associated with a worse performance on working 
memory tasks. These studies report that individuals with low executive 
control, as well as substance use disorders and other psychiatric condi
tions, display lower activity in task-relevant brain regions, such as the 
DLPFC, while failing to suppress activity in the DMN, causing them to be 
easily distracted and commit errors in performance (Fassbender et al., 
2009; Hugdahl et al., 2004; Metin et al., 2015; Squeglia & Gray, 2016; 
Weissman et al., 2006). A second set of studies equates or statistically 
controls for performance on a working memory task and examines the 
profile of brain activity required to achieve normative performance. 
These studies report that people with conditions characterized by low 
executive control, including substance use problems, display excessive 
activity in task-relevant brain regions, and, in some cases, an excessive 
suppression of the DMN to achieve normative performance (Gärtner 
et al., 2018; Sweet et al., 2010b; Wang et al., 2015). These findings are 
interpreted from a neural inefficiency perspective and suggest that 
people with lower executive control need to overcompensate and put 
forth more effort to successfully perform cognitively demanding tasks 
(Duda et al., 2019; Owens et al., 2018; Philip et al., 2013; Sweet et al., 
2008; Sweet, Jerskey, et al., 2010). 

Here we examined the relationships between working memory- 
related brain activity, as measured by the n-back task, peripheral in
flammatory biomarkers, as quantified by inflammatory cytokines and C- 
reactive protein (CRP), and substance use during the past month. 
Though prior studies have examined the separate relationships between 
executive control neural activity, peripheral inflammation, and sub
stance use, no study has examined if lower executive control and higher 
peripheral inflammation compound each other to heighten risk for 
substance use. We statistically controlled for behavioral performance on 
the n-back task in all analyses to equate for performance and to examine 
the profile of working memory-related brain activity required to achieve 
normative performance. We predicted that people with low executive 
control and high inflammation would display more substance use. 
Importantly, neuroimmune dysregulation is viewed as a risk factor for 
engaging in a broad range of unhealthy and potentially addictive be
haviors (Nusslock et al., 2024; Nusslock & Miller, 2016). Thus, we 
predicted that low executive control and high inflammation would be 
associated higher overall substance use, rather than any one specific 
substance. We operationalized low executive control as a neural in
efficiency on the n-back task to achieve normative performance (i.e., 
after statistically controlling for behavioral performance), as reflected in 
greater task-relevant brain activity and greater DMN suppression. Par
ticipants were rural African Americans who were 25 years of age. We 
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focused on rural African Americans because they are disproportionately 
exposed to inflammation-triggering stressors including childhood 
adversity, racial discrimination, and economic hardship (Acevedo-Gar
cia et al., 2008; DeNavas-Walt & Proctor, 2014; Slopen et al., 2010). 
Furthermore, the vast majority of human brain imaging research has 
been performed on White persons, with minimal attention given to 
racial and/or ethnic variation (Nusslock & Farah, 2022). We focus on 
25-year-olds because prefrontal brain systems involved in executive 
control are going through their final stages of development at this age 
(Gu et al., 2015; Somerville & Casey, 2010), and this is a critical 
developmental juncture when rates of substance use rapidly escalate 
among African Americans (Cooper et al., 2005; Substance Abuse and 
Mental Health Services Administration, 2016). 

2. Methods 

2.1. Participants 

The present study involved 119 young African American men and 
women (53.78 % women) from rural Georgia who were randomly 
selected from a larger longitudinal parent study to complete an MRI 
session. Participants were 24.4 years old (SD = 0.6) when they 
completed data collection for the present analyses. In the original parent 
study, 667 families were randomly recruited from rural communities in 
Georgia when the participants were 11 years old [M = 11.2, SD = 0.34; 
see Brody et al. (2014) for details]. At the beginning of the longitudinal 
study, the sample could be characterized as working poor; primary 
caregivers worked an average of 39.4 h per week, yet 46.3 % of the 
sample lived below federal poverty standards. The subsample of 119 
participants included in the present analyses did not differ from the 
larger sample at baseline on family poverty status, single-parent status, 
family income, parent age, parenting and parent–child relationship, 
parental depression, or children’s self-esteem and self-control. 

Participants were right-handed and were screened to exclude those 
who had MRI contradictions or a history of chronic illness, including 
asthma, cancers, diabetes, heart diseases, persistent infections, autoim
mune conditions, and major psychiatric disorders. Participants were free 
of any psychiatric medications for at least one month before partici
pating. Subsequent analyses excluded 26 participants because of inad
equate performance on the n-back task (n = 19), excessive movement (n 
= 4), or other artifacts (n = 3). Thus, the final analytic sample for this 
study was 93 participants (49.5 % female). Participants provided 

written informed consent. (See Table 1 for demographic information). 

2.2. Procedures 

We assessed neural activity during a working memory paradigm (n- 
back task), peripheral inflammatory biomarkers, and substance use for 
the past month using procedures outlined below. Working memory- 
related brain activity and peripheral inflammation were measured on 
the same day, and substance use was assessed an average of ninety days 
before the neuroimmune assessments (SD = 58 days). 

2.3. fMRI Working Memory Paradigm 

The n-back task was administered during functional imaging to 
measure working memory performance and associated brain responses. 
This is a widely employed functional MRI paradigm (Jaeggi et al., 2010; 
Owen et al., 2005) that has been shown to reliably elicit activation re
sponses from brain regions associated with working memory and exec
utive control, including the dorsolateral prefrontal cortex (DLPFC), 
superior frontal gyrus, and posterior parietal cortex, among other re
gions (Owens et al., 2018; Sweet et al., 2008; Yaple et al., 2019). The n- 
back also deactivates or suppresses activity in brain regions involved in 
the DMN, including the bilateral medial and dorsal medial prefrontal 
cortex, the posterior cingulate cortex and precuneus, the angular gyrus, 
and inferior parietal cortices (Duda et al., 2019; Owens et al., 2018; 
Philip et al., 2013; Sweet et al., 2008; Sweet, Jerskey, et al., 2010; Syan 
et al., 2019). 

The n-back task requires participants to buffer, update, match, 
encode, and respond to patterns of consonants. Stimulus presentation 
parameters were based on previous studies (Braver et al., 1997; Sweet 
et al., 2008). The present study included two n-back conditions: a 2-back 
and a 0-back. During the 2-Back, six series of 15 consonants (excluding 
“L” due to ambiguity in lower-case) were presented visually in 45-sec
ond blocks. A consonant was presented every 3 s (500 ms with a 
2500 ms inter-stimulus interval). Participants were asked to use a two- 
button response box to indicate “yes” if a consonant was the same as the 
consonant presented two earlier in the series, and “no” if it was not. 
Capitalization was randomized and each consonant block contained 33 
% targets (i.e., correct “yes” responses). The 0-back control task required 
participants to respond “yes” when they saw a predetermined target 
consonant (“H” or “h”) and “no” for any other consonants. This condi
tion included six series of nine consonants presented in 27-second blocks 
at the same rate and with the same target frequency as the 2-back. In 
total, there were two six-minute imaging runs of three 0-back/2-back 
cycles each. Behavioral performance was quantified as the proportion 
of correct responses to total responses during the 2-Back. 

In line with prior research (Oshri et al., 2022; Sweet et al., 2006; 
Sweet et al., 2010b), we took a number of steps to equate or match 
working memory performance across participants to examine the profile 
of working memory-related brain activity required to achieve normative 
performance. First, we included performance on the 2-back task during 
fMRI scanning as a covariate in all analyses to control variance associ
ated with performance accuracy in statistical models. Second, partici
pants were trained to perform the n-back task and asked to practice. 
Practice consisted of a 15 consonant 2-back task, which was adminis
tered a minimum of twice: at least once with feedback from the 
administrator, followed by as many subsequent attempts as necessary to 
achieve a criterion score of 73 % correct responses. Finally, in line with 
prior research (Sweet et al., 2008; Sweet, Jerskey, et al., 2010), we 
excluded participants who did not achieve 60 % accuracy on the 2-back 
or 80 % accuracy on the 0-back (n = 19), as this is a requirement of using 
the task. We selected 60 % as an exclusion criterion for the 2-back 
because 10 % is approximately one standard deviation above 50 % 
and thus we can be confident that participants are performing above 
chance. 

Table 1 
Participant Characteristics.   

Number (%) or Mean (SD) 

Age at study entry, years 24.4 (0.6) 
Female, percent 46 (49.5 %) 
Single 66 (70.9 %) 
Cohabited 21 (22.6 %) 
Married 6 (6.5 %) 
Years of education 13.1 (1.9) 
Full time employed 53 (57.0 %) 
Part time employed 14 (15.0 %) 
Disability 1 (1.1 %) 
Unemployed 25 (26.9 %) 
Household income < 15,000 16 (17.2 %) 
Household income 15,000 – 30,000 37 (39.8 %) 
Household income 30,000 – 45,000 7 (7.5 %) 
Household income 45,000 – 60,000 5 (5.4 %) 
Household income 60,000 – 75,000 4 (4.3 %) 
Household income > 75,000 4 (4.3 %) 
Body Mass Index (BMI) 29.7 (9.8) 
Mean correct response on 2-back task 0.82 (0.08) 
C-reactive protein (CRP mg/L) 3.5 (5.3) 
Interleukin (IL) 6 (pg/ml) 2.1 (2.2) 
Interleukin (IL) 10 (pg/ml) 1.5 (2.4) 
Tumor necrosis factor alpha (TNFa; pg/ml) 3.8 (1.3) 
Substance use 3.2 (3.5)  
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2.4. fMRI Acquisition and Image Processing 

Imaging data were collected using a GE Signa HDx 3 T scanner (GE 
Healthcare, Chicago, IL) with an 8-channel head coil at the University of 
Georgia’s Bio-Imaging Research Center. Structural images were ac
quired for anatomical reference using a high-resolution T1-weighted, 
fast-spoiled gradient-echo scan (TR = 7.8 ms; TE = 3.0 ms; FOV = 256 x 
256 mm; matrix = 256 x 256; flip angle = 20◦; 160 contiguous 1 mm 
axial slices; voxel size = 1 mm3). Functional images were acquired using 
T2* echo-planar imaging (EPI) with a single-shot, gradient-echo pulse 
sequence (TR = 2,500 ms, TE = 25 ms, FOV = 224 x 224 mm; flip angle 
= 90◦; matrix = 64 × 64, 38 contiguous 3.5-mm axial slices, voxel size =
3.5 mm3). 

MRI data were processed using Analysis of NeuroImages software 
(AFNI) (Cox, 1996). Standard preprocessing of the raw data included 
concatenation of EPI imaging runs, alignment of EPI to T1 anatomical 
volumes, EPI volume registration to the 3rd volume of the first imaging 
run, censoring any volumes that exhibited outlying values or excessive 
movement (>0.3 mm between volumes), and transformation into stan
dard stereotaxic space (Talairach & Tournoux, 1988). Participants 
exhibiting greater than 25 % censored volumes were excluded from 
analyses. Spatial blurring over a 6-mm radius was applied using a 
Gaussian kernel to compensate for typical variations in functional 
neuroanatomy across participants. 

A voxelwise General Linear Model (GLM) was conducted to quantify 
neural responses to the n-back paradigm. For each voxel of every indi
vidual, a GLM of the temporal pattern of the 2-back presentation 
(including hemodynamic transitions modeled as a gamma function), the 
0-back control task, and covariates (movement quantified during the EPI 
volume registration process, linear drift) was performed using the BOLD 
signal over time as the dependent variable. The 0-back control task was 
the baseline to which neural activity during the 2-back was compared (i. 
e. 2-back vs 0-back contrast). 

Regions of interest (ROI) previously identified as nodes of working 
memory and default mode networks were selected using Neurosynth 
(neurosynth.org), a large-scale online database that uses a meta-analytic 
approach to aggregate the results of published neuroimaging studies 
associated with terms of interest (Yarkoni et al., 2011). This approach to 
ROI extraction is consistent with published work in the field (Gutierrez- 
Colina et al., 2021; Tso et al., 2018). Aggregated data related to the 
search terms “Working Memory” and “Default Mode” were used to form 
association statistical inference maps, which indicates whether activa
tion in a given voxel occurs more consistently among studies that 
mention the search term than for studies that do not using a false dis
covery rate (FDR) corrected voxel threshold of p < 0.01. These inference 
maps were resampled to match our dataset geometry (i.e., 3.5 mm3 

isometric voxel resolution in standard Talairach space) and further 
thresholded to resolve the eight most robust nodes greater than 10 
voxels for each network (see Table 2 and Fig. 1). DMN nodes that crossed 
the midline (i.e., orbitofrontal cortex and posterior cingulate/pre
cuneus) were divided into right and left ROIs. The final FDR corrected 
voxel thresholds for ROI generation were z > 8.41 for the working 
memory Network and z > 6.93 for the DMN. Region names were based 
on center of mass using the Human Connectome Project (HCP) 
anatomical atlas in AFNI (Glasser et al., 2016). Mean beta coefficients 
for the 2-back vs 0-back contrast within each of these ROIs were 
extracted for subsequent analyses. To manage multiple comparisons, 
and consistent with our prior work (Hallowell et al., 2019), we averaged 
the 8 working memory ROIs to form a working memory composite score, 
and the 8 Default Mode ROIs to form a Default Mode composite score. 
We weighted each ROI by its number of voxels when forming composite 
scores. To complement analyses with composite scores, we also present 
follow-up analyses with individual working memory and DMN ROIs in 
the Results section and Supplementary Materials. 

As expected, the mean value of the working memory composite score 
was a positive number (M = 0.22; SD = 0.22) and the mean value of the 

DMN composite score was a negative number (M = -0.16; SD = 0.15), 
indicating that the working memory network was activated at the group 
level and the DMN was deactivated at the group level during the n-back 
task. Furthermore, each of the 8 individual working memory ROIs were 
activated during the n-back task (i.e., had a positive mean value) and 
each of the DMN ROIs were deactivated (i.e., had a negative mean 
value). 

As noted above, and in line with theory and prior research (Gärtner 
et al., 2018; Sweet., et al., 2010b; Wang et al., 2015), we operationalized 
low executive control as a neural inefficiency on the n-back task to 
achieve normative performance (i.e., after equating or statistically 
controlling for performance on the n-back task). This neural inefficiency 
is reflected in greater task-relevant activity in working memory and 
executive control brain regions, and greater suppression of DMN-related 
brain activity to achieve this normative performance. Support for this 
approach are studies showing that greater task-relevant brain activity 
and greater DMN suppression during the n-back task (after equating for 
behavioral performance) are associated with greater effort to achieve 
normative performance, mental and physical health problems, and 
exposure to early life adversity (Duda et al., 2019; Owens et al., 2018; 
Philip et al., 2013; Sweet et al., 2008; Sweet, Jerskey, et al., 2010; Syan 
et al., 2019). To further validate this metric of neural inefficiency in the 
present data set, we examined the relationships between reaction time 
on the n-back task with the working memory and DMN composite score, 
after statistically controlling for behavioral performance on the n-back 
task. As expected, individuals with greater working memory neural ac
tivity had a slower (i.e., less efficient) reaction time on the n-back task 
after statistically controlling for behavioral performance (rpartial = 0.22, 
p = 0.04). There was no relationship, however, between DMN neural 
activity and reaction time after statistically controlling for behavioral 
performance (rpartial = -0.04, p = 0.074; although this relationship was 
present and in the expected direction when behavioral performance was 
excluded from the model, r = -0.20, p = 0.055). 

2.5. Inflammation Biomarkers 

From antecubital blood, we quantified serum levels of CRP, inter
leukin (IL)-6, IL10, and tumor necrosis factor alpha (TNFα). Although IL- 
10 functionally is an anti-inflammatory cytokine, it is expressed only 
under conditions of inflammation. Thus, statistically, it behaves like the 
inflammatory cytokines such that higher levels reflect more inflamma
tory activity. The inflammatory markers were assayed in a single batch 

Table 2 
Working Memory and Default Mode Network (DMN) Regions-of-Interest (ROI).  

Working Memory ROIs 
Area Cluster 

Size 
Center-of-Mass Coordinates (x,y, 
z) 

Left Rostral Middle Frontal Gyrus 106 − 44.4, 17.7, 29.3 
Left Inferior Parietal Lobule 86 − 36.4, − 52.3, 44 
Right Rostral Middle Frontal 

Gyrus 
82 41.3, 35.6, 26.2 

Right Inferior Parietal Lobule 70 39.8, − 48.8, 44.2 
Right Caudal Middle Frontal 

Gyrus 
62 30.5, 5.4, 53.8 

Left Caudal Middle Frontal Gyrus 47 − 27.3, − 1.7, 54.3 
Left Superior Frontal Gyrus 17 − 3.4, 15.4, 47.3 
Right Superior Parietal Lobule 10 10.5, − 68.6, 53.8 
Default Mode Network ROIs 
Left Precuneus 97 − 4.2, − 52.3, 28.5 
Right Precuneus 91 4.6, − 53.7, 27.2 
Left Medial Orbitofrontal Gyrus 69 − 3.2, 51.3, 6.8 
Left Angular Gyrus 69 − 47, − 65.8, 33 
Right Angular Gyrus 69 49.7, − 63.1, 31.3 
Right Medial Orbitofrontal Gyrus 59 3.9, 49.2, 2.7 
Left Middle Temporal Gyrus 10 − 60.9, − 15.3, − 17.3 
Right Superior Frontal Gyrus 10 24.5, 29.8, 46.4 

Note: Talairach Coordinates are reported in LPI orientation 
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at the end of the study. CRP was measured by high-sensitivity immu
noturbidimetric assay on a Roche/Hitachi cobas c 502 analyzer (Roche 
Diagnostics, Basel, Switzerland) (lower limit of detection, 0.2 mg/L). 
The average intra- and inter-assay coefficients of variation obtained for 
this particular assay were 2.5 % and 5.6 %. The cytokines were 
measured in duplicate by electrochemiluminescence on a SECTOR 
Imager 2400A (Meso Scale Discovery, Rockville, MD) with a Human 
ProInflammatory Ultra-Sensitive assay kit (Meso Scale Discovery), 
following the manufacturer’s instructions. The kit’s lower limits of 
detection range from 0.19 pg/mL (IL-6) to 0.57 pg/mL (IL10). Across 
runs, the intra-assay coefficients of variation obtained for this batch of 
assays for duplicate pairs were 4.01 % (IL-6), 4.59 % (IL-10), and 3.80 % 
(TNFa). Following previous work (G. E. Miller et al., 2014; Nusslock 
et al., 2019), we Z-scored the values of each biomarker and then sum
med them to form a composite inflammatory biomarker score. A higher 
score on this composite reflects higher systemic inflammation. The 
composite inflammatory biomarker score was significantly associated 
with each of the individual inflammatory biomarkers at p < 0.001 (IL-6, 
r = 0.72; IL-10, r = 0.60; TNFα, r = 0.72; CRP, r = 0.68). There are 
several advantages to using a composite inflammatory score. First, a 
composite score lowers the chance of a Type I Error by reducing the 
number of tests performed (in this case, by 75 %). Second, by virtue of 
including multiple proteins, the composite represents a conservative 
approach to defining inflammation, because obtaining a high score re
quires having an elevated score on more than one biomarker. Third, it 
considers the dynamic activity among the inflammatory markers of in
terest acting on target cells and the cascading manner in which these 
markers are released. To supplement analyses of the composite, we 
present separate models for each inflammatory biomarker in the Sup
plemental Materials. 

2.6. Substance Use 

Participants reported their past-month frequencies of cigarette 
smoking, alcohol use, heavy drinking, and marijuana use with items 
from the Monitoring the Future Study (Johnston et al., 2007). A 
response set ranging from 0 (not at all) to 6 (more than two packs a day) 
was used for cigarette smoking; a scale ranging from 0 (none) to 5 (20 or 
more times) was used to measure alcohol use, heavy drinking, and 
marijuana use. We predicted that low executive control and high 
inflammation would be associated with higher overall substance use, 
rather than any one specific substance. Accordingly, we summed the 
responses for each of the individual substances to form a substance use 
composite (α = 0.66), a procedure that is consistent with our own and 
others’ prior research (Brener et al., 2022; Chen et al., 2018; Weigard 
et al., 2021). This substance use measure has demonstrated predictive 

validity among samples of Caucasian and Black adolescents (Johnston 
et al., 2007) and among Black adolescents and young adults (Brody 
et al., 2019). Modest internal consistency is common with composite 
measures indexing different forms of substance use (Spoth et al., 2009). 
Because the distributions of substance use were skewed, we used a 
Poisson model for analyses involving substance use data. To compliment 
analyses with the substance use composite score, we present primary 
analyses for each separate substance in the Supplemental Materials. 

2.7. Personal Socioeconomic Status (SES) 

Participants reported their average monthly gross personal incomes 
and the highest level of education they have completed as 1 = Grade 9 or 
below, 2 = Grade 10, 3 = Grade 11, 4 = High school graduate or GED, 5 
= Some college or trade school, 6 = Trade school diploma or certificate 
or associate of arts degree, 7 = Bachelor’s degree, 8 = Some graduate 
training, 9 = Master’s degree, and 10 = Doctorate or Professional de
gree. We standardized participants’ income and education achievement 
and summed them to form a personal SES score. 

2.8. Data Analysis 

To test our primary hypothesis that low executive control and high 
inflammation are associated with increased substance use, we con
ducted two linear regression models where we regressed the substance 
use composite score- onto (a) the composite inflammatory biomarker 
score, (b) the working memory composite score (Analysis I) or the DMN 
composite score [Analysis II], and (c) the interaction between the 
inflammation composite score and the respective neural composite score 
(working memory for Analysis I; DMN for Analysis II). We statistically 
controlled for variance associated with sex, behavioral performance on 
the 2-back task, the number of days between the substance use and 
neuroimmune assessments, body mass index (BMI), and personal so
cioeconomic status (SES) in all analyses. Significance was two-tailed, α 
< 0.05, and we employed Fisher’s protected t tests to minimize fam
ilywise error rate which requires a significant omnibus analysis to pro
ceed to follow-up analyses (Cohen et al., 2003). We also used composite 
scores for each of the three primary variables (inflammation, neural 
activity, substance use) to minimize familywise error rate. Significant 
interaction terms were interpreted by plotting the estimated frequency 
of substance use for the different levels of working memory activation 
and DMN suppression by different levels of inflammation (low = 1 SD 
below the mean, high = 1 SD above the mean). To further probe sig
nificant interactions, we ran separate regression models for each indi
vidual ROI that comprised a significant working memory and/or DMN 
composite score to examine the influence of each specific brain region in 

Fig. 1. Working Memory and Default Mode Network (DMN) Regions-of-Interest (ROI). Axial and both left (L)- and right (R)-hemisphere sagittal views of the working 
memory and DMN ROIs. Working memory ROIs are depicted in turquoise and DMN in purple. The size of the sphere is scaled to the cluster size of the ROI (see 
Table 2). The spheres are merely visual depictions of the ROIs that were generated using Neurosynth (see Methods). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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a network. 

3. Results 

We present the scatter plots of the single order relationships between 
composite working memory and DMN neural activity with the inflam
matory composite score in the Supplemental Materials. 

3.1. Composite Working Memory and Default Mode Network Activity by 
Inflammation on Substance Use 

Table 3 presents the results of analyses regressing the substance use 
composite score onto the composite inflammatory score and composite 
working memory (Analysis I) and DMN (Analysis II) neural activity. A 
significant interaction between inflammation and working memory 
neural activity on substance use emerged (B = 0.210, 95 % CI [.062, 
0.358], p = 0.005), independent of main effects and covariates. The top 
panel of Fig. 2 presents this interaction with slopes. Consistent with 
prediction, simple-slopes analyses indicated that inflammation was 
positively associated with substance use among participants with high 
levels of working memory neural activity during the n-back task (i.e., 
those with low executive control, who had to recruit more working 
memory neural resources to achieve the same performance; b = 0.493 
[se = 0.130], p < 0.001; rate ratio = 1.64, 95 % CI [1.27, 2.12). For 
participants with low levels of working memory neural activity, 
inflammation and substance use were unrelated (b = 0.073 [se = 0.084], 
p = 0.385; rate ratio = 1.08, 95 % CI [0.910, 1.271]). Similarly, a sig
nificant interaction between inflammation and DMN neural activity on 
substance use also emerged (B = -0.219, 95 % CI [-0.335, − 0.104], p =
0.001), independent of main effects and covariates. The bottom panel of 
Fig. 2 presents this interaction with slopes. Consistent with prediction, 
simple-slopes analyses indicated that inflammation was positively 
associated with substance use among participants with low levels of 

DMN reactivity (i.e., those who needed to suppress the DMN more to 
achieve the same behavioral performance; b = 0.367 [se = 0.087], p <
0.001; rate ratio = 1.44 % CI [1.214, 1.716]). For participants with high 
levels of DMN neural activity, inflammation and substance use were 
unrelated (b = -0.071 [se = 0.102], p = 0.490; rate ratio = 0.93, 95 % CI 
[0.760, 1.141]). (See Supplemental Materials for analyses involving 
each inflammatory biomarker and each separate substance with the 

composite working memory and DMN neural activity).1 

3.2. Follow-up Analyses with Individual Working Memory and Default 
Mode Network Regions-of-Interests 

Table 4 presents the results of follow-up analyses regressing the 
substance use composite score onto the composite inflammatory score 
and each individual working memory and DMN ROI separately. Within 
the working memory network, there was a significant ROI by inflam
mation interaction in the left rostral middle frontal gyrus (B = 0.224, 95 
% CI [.076, 0.373], p = 0.003), the right inferior parietal lobule (B =
0.225, 95 % CI [.0790, 0.360], p = 0.001), the left caudal middle frontal 
gyrus (B = 0.184, 95 % CI [.048, 0.319], p = 0.008), the left superior 
frontal gyrus (B = 0.128, 95 % CI [.006, 0.249], p = 0.039) and the right 
superior parietal lobule (B = 0.234, 95 % CI [.060, 0.408], p = 0.008). 
Consistent with prediction, simple slope analyses indicated that 
inflammation was positively associated with substance use among par
ticipants with high levels of working memory neural activity in each of 
the significant working memory ROIs (See Supplemental Fig. 1 Mate
rials). Among the DMN regions, there was a significant ROI by inflam
mation interaction in the left precuneus (B = -0.147, 95 % CI [-0.260, 
− 0.035], p = 0.010), right precuneus (B = -0.344, 95 % CI [-0.344, 
− 0.090], p < 0.001), left medial orbitofrontal gyrus (B = -0.253, 95 % CI 
[-0.398, − 0.108], p =< 0.001), left angular gyrus (B = -0.226, 95 % CI 
[-0.355, − 0.097], p =< 0.001), right angular gyrus (B = -0.209, 95 % CI 
[-0.365, − 0.052], p = 0.009), and the right medial orbitofrontal gyrus 
(B = -0.3132, 95 % CI [-0.494, − 0.171], p < 0.001). Consistent with 
prediction, simple slope analyses indicated that inflammation was 
positively associated with substance use among participants with low 
levels of DMN activity in each of the significant DMN ROIs (See Sup
plemental Fig. 2 Materials). 

4. Discussion 

Consistent with prediction, we found that individuals who displayed 
both low executive control and high inflammation reported higher 
substance use behaviors over the past month. We statistically controlled 
for behavioral performance on the 2-back task, and excluded partici
pants who performed poorly on this task, in order to equate for perfor
mance and to examine the profile of executive control-related brain 
activity required to achieve normative performance. We defined low 
executive control as a neural inefficiency during the n-back task to 
achieve this normative performance; meaning that participants with low 
executive control had to work harder to exhibit valid or normative task 
performance. This profile of neural inefficiency is characterized by 
higher working memory-related neural activity on the n-back, and lower 
activity in the DMN after statistically equating for behavioral perfor
mance. In line with prediction, both high levels of working memory 
neural activation and low levels of DMN activation after statistically 
equating for performance interacted with inflammation to predict 
higher substance use. We also controlled for sex, the number of days 
between the substance use and neuroimmune assessments, BMI, and 
SES. We excluded participants with a chronic physical illness or a major 
psychiatric diagnosis, and participants were free of any psychiatric 
medications for at least one month before participating, suggesting that 
our findings are not confounded by a comorbid health condition. 

Low executive control and heightened inflammation have both been 
associated with substance use in separate literatures (Hutchinson & 
Watkins, 2014; Koob & Volkow, 2016). The present study tested the 

Table 3 
Substance use regressed on inflammation and composite working memory 
(Model 1) and default mode network (Model 2) neural activation.   

B 95 % CI p 

Model 1. Working memory composite neural activity 
Intercept  1.119 0[.998, 1.241]  0.000 
Sex  0.526 0[.271, 0.782]  0.000 
Performance on n-back  0.101 [-0.024, 0.225]  0.113 
Time1  0.004 0[.001, 0.006]  0.001 
Body mass index (BMI)  − 0.025 [-0.169, 0.119]  0.735 
Personal SES  − 0.079 [-0.155, − 0.002]  0.043 
Inflammation  0.283 0[.128, 0.438]  0.000 
WM composite  0.079 [-0.037, 0.195]  0.182 
WM X Inflammation  0.210 0[.062, 0.358]  0.005 
Model 2. Default mode network composite neural activity 
Intercept  1.078 0[.955, 1.202]  0.000 
Sex  0.499 0[.241, 0.757]  0.000 
Performance on n-back  0.130 0[.006, 0.255]  0.040 
Time1  0.003 0[.000, 0.005]  0.023 
Body mass index (BMI)  0.033 [-0.115, 0.181]  0.664 
Personal SES  − 0.074 [-0.150, 0.002]  0.056 
Inflammation  0.148 0[.002, 0.294]  0.047 
DMN composite  − 0.064 [-0.184, 0.057]  0.303 
DMN x Inflammation  − 0.219 [-0.335, − 0.104]  0.000  

1 number of Days between substance use and neuroimmune assessments; WM, 
working memory; DMN, default mode network; SES, socioeconomic status. 

1 The results remain unchanged if outliers of inflammatory biomarkers are 
removed either by winsorizing or excluding inflammatory data that are more 
than two standard deviations away from the mean. This is true regardless of 
whether outliers are removed before or after generating the composite in
flammatory biomarker score. 
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hypothesis that the interaction between low executive control and high 
inflammation is associated with heightened substance use. Based on 
emerging neuroimmune network perspectives (Hutchinson & Watkins, 
2014; Nusslock & Miller, 2016; Treadway et al., 2019), we propose that 
by altering executive control, inflammation weakens the ability of the 
prefrontal cortex to regulate stress and limbic reactivity, thus height
ening negative emotions and dysphoria. In line with this view is evi
dence that lower activity and connectivity in brain regions involved in 
executive control are associated with negative emotions, depression, 
and anxiety (Johnstone et al., 2007; Sylvester et al., 2012; Warren et al., 
2021). Next, lower executive control should predispose people to use 
substances like alcohol, cigarettes, and cannabis, in part to self-medicate 
their dysphoria (Volkow et al., 2016). Increased substance use further 
deteriorates brain regions implicated in executive control and generates 
deficits in working memory, cognitive flexibility, and response inhibi
tion (Goldstein & Volkow, 2011). Substance use may be especially 
harmful to individuals transitioning to adulthood, as in the present 
study, given that regions of the prefrontal cortex involved in executive 
control continue to develop into the late twenties (Gu et al., 2015; 
Somerville & Casey, 2010). If the inflammation triggered by these be
haviors spreads to the brain, it could establish an unhealthy cycle, 
whereby reduced executive control facilitates proinflammatory behav
iors, which, in turn, further reduces executive control, and so on. When 
combined with evidence that inflammation also lowers signaling in the 
brains reward’s circuit (Felger & Treadway, 2017; Miller et al., 2013), 

Fig. 2. Relationship between inflammation and composite working memory (top panel) and default mode network (bottom panel) neural activation on substance use 
over the past month. High = 1 standard deviation above the mean; low = 1 standard deviation below the mean; DMN = default mode network. 

Table 4 
Substance use regressed on inflammation and individual working memory and 
default mode network (DMN) regions-of-interests.   

B 95 % CI p 

Interaction of inflammation and working memory ROIs on substance use 
Left Rostral Middle Frontal Gyrus  0.224 0[.076, 0.373]  0.003 
Left Inferior Parietal Lobule  0.127 [-0.018, 0.273]  0.087 
Right Rostral Middle Frontal Gyrus  0.099 [-0.042, 0.240]  0.168 
Right Inferior Parietal Lobule  0.225 0[.090, 0.360]  0.001 
Right Caudal Middle Frontal Gyrus  0.039 [-0.117, 0.196]  0.621 
Left Caudal Middle Frontal Gyrus  0.184 0[.048, 0.319]  0.008 
Left Superior Frontal Gyrus  0.128 0[.006, 0.249]  0.039 
Right Superior Parietal Lobule  0.234 0[.060, 0.408]  0.008 
Interaction of inflammation and DMN ROIs on substance use 
Left Precuneus  − 0.147 [-0.260,- 0.035]  0.010 
Right Precuneus  − 0.217 [-0.344,- 0.090]  0.000 
Left Medial Orbitofrontal Gyrus  − 0.253 [-0.398, − 0.108]  0.000 
Left Angular Gyrus  − 0.226 [-0.355, − 0.097]  0.000 
Right Angular Gyrus  − 0.209 [-0.365, − 0.052]  0.009 
Right Medial Orbitofrontal Gyrus  − 0.332 [-0.494, − 0.171]  0.000 
Left Middle Temporal Gyrus  − 0.043 [-0.168, 0.081]  0.497 
Right Superior Frontal Gyrus  − 0.045 [-0.169, 0.078]  0.472 

Note. All models controlled for sex, behavioral performance on the 2-back, 
number of days between substance use and neuroimmune assessments, body 
mass index (BMI), and socioeconomic status (SES). ROIs, regions-of-interest. 
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another marker of risk for substance use (Bart et al., 2021; Büchel et al., 
2017), this unhealthy neuroimmune cycle could generate risk for 
problematic substance use and addiction. 

Stress and adversity heighten cross-talk between the brain and im
mune system and set the foundation for neuroimmune dysregulation 
that has been associated with mental and physical health problems 
(Nusslock & Miller, 2016). The African-American participants in the 
present study live in low-resource communities in the southeastern US 
and are disproportionately exposed to structural inequities, social ad
versities, and racial discrimination (Acevedo-Garcia et al., 2008; 
DeNavas-Walt & Proctor, 2014; Slopen et al., 2010). Integrative neu
roimmune network models that specify the mechanisms through which 
social adversity generate health disparities can facilitate the develop
ment of preventative interventions that target both behavior and 
biology, and, ideally, bring attention to structural inequities that can be 
targeted through policies (Nusslock & Farah, 2022; Nusslock & Miller, 
2016; Treadway et al., 2019). Related, it will be important for future 
research to examine the extent to which stress and adversity moderate 
the relationship between neuroimmune signaling and substance use 
behaviors. 

Follow-up analyses indicated that activation in several brain regions 
involved in working memory interacted with inflammation to predict 
substance use. These brain regions included portions of the DLPFC, 
which is involved in working memory and executive control, and the 
parietal cortex, which is involved in focused attention and visual-spatial 
processing (Bressler & Menon, 2010; Dosenbach et al., 2006; Gordon 
et al., 2018; Sweet et al., 2008). These findings align with existing 
research on working memory-related brain activity that statistically 
controls for or equates for behavioral performance, and suggests that 
individuals with low executive control have to work harder and expend 
more neuronal resources to achieve normative performance (Gärtner 
et al., 2018; Wang et al., 2015). Research on executive control deficits in 
the DMN is a bit more inconsistent. In line with some work (Sweet, 
Jerskey, et al., 2010), we observed that low activity after equating for 
behavioral performance in the precuneus, medial prefrontal cortex, and 
angular gyrus, all regions implicated in the DMN, interacted with 
inflammation to predict substance use. These findings align with a 
neural inefficiency perspective which argues that individuals with low 
executive control excessively suppress brain activity associated with 
task-irrelevant mental processes to perform the task at hand and to 
achieve normative performance (Sweet, Jerskey, et al., 2010). Other 
studies, however, report that individuals with conditions like ADHD and 
depression are unable to suppress the DMN activity and task-irrelevant 
brain activity (Fassbender et al., 2009; Gärtner et al., 2018; Metin 
et al., 2015). Future research is needed to resolve this and determine 
whether certain mental and physical health conditions are characterized 
by distinct profiles of executive control deficits in the DMN. Further
more, while the present study focused on executive control-related 
neural activity, there are other brain systems implicated in neuro
immune signaling and risk for substance use (Nusslock et al., 2024; 
Nusslock & Miller, 2016). Future research should examine the speci
ficity of our findings to working memory and DMN neural activity. 

There were limitations to the present study that should be addressed 
in subsequent research. First, although executive control-related brain 
activity and peripheral inflammation were measured on the same day, 
substance use was assessed a few months before the neuroimmune as
sessments. We controlled for the number of days between the substance 
use and neuroimmune assessments in all our analyses to try to address 
this limitation. However, this assumes that rates of substance use stayed 
relatively constant between the substance use and neuroimmune as
sessments and does not adjust for the possibility of variation in sub
stance use during this period. It will be important for future research to 
conduct neuroimmune and substance use assessments on the same day. 
Second, and related, the cross-sectional and observational nature of our 
design prevents us from establishing causality. Further, the fact that 
substance use was measured before neuroimmune assessments prevents 

us from examining whether the interaction between executive control- 
related brain activity and inflammation prospectively predicts sub
stance use. A longitudinal study measuring executive control-related 
brain activity, inflammation, and substance use across development is 
needed to examine the temporal sequence of events and answer mech
anistic questions about how neuroimmune signaling might generate risk 
for increased substance use. Third, although we observed considerable 
variation in substance use, the absolute amounts of substance use among 
the study population was modest. This finding is consistent with other 
epidemiological findings which show low levels of substance use among 
Black youth and young adults (Brody et al., 2019). Given the restricted 
range of substance use in the study sample, it is possible the results re
ported here could be construed as conservative tests of the study hy
potheses. This conjecture will be sorted out in future research that 
include larger samples that include neuroimmune assessments. Fourth, 
we focused on African American participants given they are exposed to 
higher levels of inflammation-triggering stressors, display elevated 
substance use in middle to late adulthood, and experience dispropor
tionate consequences from substance use (Acevedo-Garcia et al., 2008; 
Noll et al., 2003; Slopen et al., 2010). Future research should examine 
whether our results extend to other racial and ethnic groups. Fifth, and 
related, we excluded participants with a chronic physical illness or a 
major psychiatric diagnosis, and participants were free of any psychi
atric medication for at least one month prior to their neuroimmune as
sessments. The benefit of this is that it positions us to identify 
mechanisms and neuroimmune pathways to substance use that are not 
confounded by comorbid health conditions or medications. A limitation 
of this exclusion criteria, however, is that might make results less 
generalizable to clinically vulnerable populations, which should be 
addressed in subsequent research. Sixth, we operationalized low exec
utive control as a neural inefficiency on the n-back task after equating or 
statistically controlling for behavioral performance (i.e., greater work
ing memory and executive control neural activity and greater suppres
sion of DMN activity). This approach is consistent with prior research 
and validated by the fact that this profile of brain activity is associated 
with greater effort to achieve normative performance on the n-back task 
and both mental and physical health problems (Duda et al., 2019; 
Gärtner et al., 2018; Owens et al., 2018; Sweet, Jerskey, et al., 2010; 
Syan et al., 2019). However, laboratory tests validating this marker of 
neural inefficiency are lacking and future research is needed to address 
this issue. Finally, neuroimmune network models postulate that neuro
inflammatory dysregulation heightens risk for a broad range of un
healthy and addictive behaviors, rather than any particular class of 
substances (Nusslock et al., 2024; Nusslock & Miller, 2016). However, 
the present study is not sufficiently powered to test whether neuro
immune associations with one substance is significantly stronger than 
associations with the substance use composite score. Future research 
that is appropriately powered is needed to address this issue. Related, we 
used a composite inflammatory score because it a) lowers the chance of a 
Type I Error, b) is a conservative approach to defining inflammation, 
and c) considers the dynamic activity among inflammatory markers of 
interest. There are multiple approaches, however, to modeling periph
eral inflammatory biomarkers in humans, including data driven (i.e., 
Principal Component Analysis) methods for generating composite scores 
(e.g., Moriarity, et al., 2021). Future research that is sufficiently pow
ered should replicate the reported results testing multiple different ap
proaches to modeling peripheral inflammation. 

Meanwhile, the present study advances knowledge on neuroimmune 
signaling in risk for addiction and suggests that low-executive control 
neural activity and heightened inflammation are associated with 
elevated substance use. These findings have implications for under
standing psychological, neural, and immunological risk factors for 
problematic substance use and the development of interventions to 
target each of these components to treat, and ideally prevent, substance 
misuse. 
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